Arabic Language WEKA-Based Dialect Classifier for Arabic Automatic Speech Recognition Transcripts

نویسندگان

  • Areej Alshutayri
  • Eric Atwell
  • Abdulrahman Alosaimy
  • James Dickins
  • Michael Ingleby
  • Janet Watson
چکیده

This paper describes an Arabic dialect identification system which we developed for the Discriminating Similar Languages (DSL) 2016 shared task. We classified Arabic dialects by using Waikato Environment for Knowledge Analysis (WEKA) data analytic tool which contains many alternative filters and classifiers for machine learning. We experimented with several classifiers and the best accuracy was achieved using the Sequential Minimal Optimization (SMO) algorithm for training and testing process set to three different feature-sets for each testing process. Our approach achieved an accuracy equal to 42.85% which is considerably worse in comparison to the evaluation scores on the training set of 80-90% and with training set 60:40 percentage split which achieved accuracy around 50%. We observed that Buckwalter transcripts from the Saarland Automatic Speech Recognition (ASR) system are given without short vowels, though the Buckwalter system has notation for these. We elaborate such observations, describe our methods and analyse the training dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Dialect Detection in Arabic Broadcast Speech

In this paper, we investigate different approaches for dialect identification in Arabic broadcast speech. These methods are based on phonetic and lexical features obtained from a speech recognition system, and bottleneck features using the i-vector framework. We studied both generative and discriminative classifiers, and we combined these features using a multi-class Support Vector Machine (SVM...

متن کامل

Arabic Dialect Identification Using iVectors and ASR Transcripts

This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egypti...

متن کامل

Using prosody and phonotactics in Arabic dialect identification

While Modern Standard Arabic is the formal spoken and written language of the Arab world, dialects are the major communication mode for everyday life; identifying a speaker’s dialect is thus critical to speech processing tasks such as automatic speech recognition, as well as speaker identification. We examine the role of prosodic features (intonation and rhythm) across four Arabic dialects: Gul...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Development of a conversational telephone speech recognizer for Levantine Arabic

Many languages, including Arabic, are characterized by a wide variety of different dialects that often differ strongly from each other. When developing speech technology for dialect-rich languages, the portability and reusability of data, algorithms, and system components becomes extremely important. In this paper, we describe the development of a large-vocabulary speech recognition system for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016